Problems with treatment of solid digestate and approaches to their solution

- Jacques G. Fuchs (FiBL, CH-Frick)
- Konrad Schleiss (UMWEKO GmbH, CH-Grenchen)
- Ulrich Galli (Terra Nova Umweltberatung GmbH, CH-Breitenbach)
- Arthur Wellinger (Nova Energie GmbH, CH-Aadorf)
- Alfred Berner (FiBL, CH-Frick)

Introduction:
Pathway of organic substances

Mature slurry

Digestion (mesophlic)

Co-digestion (mesophic)

Digestion (thermophlic)

Composting

Liquid digestate

Press water

Solid digestate

Compost

Field application
Properties of solid digestate with respect to its use in agriculture

- Nutrient content
 - Total nutrient content of solid digestate ≈ compost
 - NH₄ content of solid digestate >> compost

- Organic matter
 - Organic substance in solid digestate ≈ young compost
 - Stability of the organic substance in solid digestate << compost

- Phytotoxicity
 - Phytotoxicity of solid digestate >> compost

Solid digestate: agronomic considerations

- Properties of fresh digestate:
 - High availability of nutrients (mainly nitrogen)
 - Limited improvement of soil fertility
 - High phytotoxicity
 - Material unstable, in the process of rotting

- Consequences for its use:
 - Use mainly in arable crops, less in horticulture
 - Application only at times when crops can take up nitrogen

- Open questions:
 - Is it possible to store solid digestate? How?
 - Can solid digestate be stabilized and improved with post-treatment?
 - How can the content of Nmin be retained in post-treatment?

Consequences of inadequate storage or treatment of solid digestate

- High danger that ammonia is lost as gas.
 - N availability in soil after application
Consequences of inadequate storage or treatment of solid digestate

- High danger that ammonia is lost as gas.
 - If treated wrong, solid digestate can block nitrogen in the soil.
 - If treated or stored wrong, greenhouse gases can be emitted in elevated amounts (CH₄, N₂O, ...).
 - If treated or stored wrong, the biological quality may be reduced (e.g. phytotoxicity).

Preliminary experiments on solutions

- **Questions**: - Can a high-value product be produced from solid digestate?
 - How can nitrogen losses be minimized?
- **Approaches**:
 - Post-fermentation composting of solid digestate
 - Optimization of aeration and humidity, to assure sufficient oxygen supply and minimal ammonia losses.
 - Addition of additives to improve composting and minimize ammonia losses.
Preliminary experiments on solutions

Experiment 1:

- **Treatments:**
 - 1A: 70% digestate + 30% sieve remains
 - 1B: 30% digestate + 10% sieve remains + 60% green manure
 - 1C: 30% digestate + 10% sieve remains + 60% young compost

- **Young compost used:** no optimal quality (technical problems in the composting process)

- **Composting system:** small piles turned daily

- **Trial period:** 6 weeks (28.06.2005 – 09.08.2005)

Temperature in the pile

- **1A:** 70% digestate + 30% sieve remains
- **1B:** 30% digestate + 10% sieve remains + 60% green manure
- **1C:** 30% digestate + 10% sieve remains + 60% young compost

Islamic Republic of Iran

"Progress in treatment of manure and digestate" 24-25 February 2010, Heiden, Germany
Preliminary experiments on solutions

Experiment 1:

1A: 70% digestate + 30% sieve remains
1B: 30% digestate + 10% sieve remains + 60% green manure
1C: 30% digestate + 10% sieve remains + 60% young compost

CO₂-content in the pile

- 1A
- 1B
- 1C

Heiden, 24th February 2010

O₂-content in the pile

- 1A
- 1B
- 1C

Heiden, 24th February 2010

NH₄-N-content in compost

- 1A
- 1B
- 1C

Heiden, 24th February 2010
Preliminary experiments on solutions

Experiment 1:

1A: 70% digestate + 30% sieve remains
1B: 30% digestate + 10% sieve remains + 60% green manure
1C: 30% digestate + 10% sieve remains + 60% young compost

Evolution of NO₃-N content in compost over time.

Influence of application of 6 weeks old compost on Nmin-content in soil.

Phytotoxicity tests:
Duration of composting process: 6 weeks.
Preliminary experiments on solutions

Experiment 1:
- Active composting process in all mixtures
- Similar development in all composting parameters (Temp, O₂ und CO₂) and all treatments
- Great reduction in NH₄ in the first 4 weeks in all treatments
- After ca. 3 weeks elevated NO₃ in mixtures with 30% digestate, as compared with 70% digestate
- No Nmin blocking in soil. Elevated release of Nmin in mixtures with 30% digestate, as compared with 70% digestate
- After 6 weeks of composting: low phytotoxicity. Treatment with 60% young compost: less good (problems with the quality of the young compost?)

Experiment 2:
- Treatment:
 - 2A: 100% digestate
 - 2B: 70% digestate + 30% sieve remains
 - 2C: 30% digestate + 10% sieve remains + 60% young compost
- Young compost used: no optimal quality (technical problems in the composting process, high acetate content: lack of oxygen)
- Composting system: small piles turned daily
- Trial period: 8 weeks (04.10.2005 – 29.11.2005)
Preliminary experiments on solutions

Experiment 2:
2A: 100% digestate
2B: 70% digestate + 30% sieve remains
2C: 30% digestate + 10% sieve remains + 60% young compost

Temperatur in the pile

Duration of process [days]

Temperature [°C]

Heiden, 24th February 2010

NH₄-N-content in compost

Duration of process [weeks]

NH₄-N [mg / kg DM]

Heiden, 24th February 2010

NO₃-N-Gehalt im Kompost

NO₃-N [mg / kg DM]

Heiden, 24th February 2010
Preliminary experiments on solutions

Experiment 2:

- **2A:** 100% digestate
- **2B:** 70% digestate + 30% sieve remains
- **2C:** 30% digestate + 10% sieve remains + 60% young compost

Influence of application of 8 weeks old compost on Nmin-content in soil

Phytotoxicity tests

Composting process started quickly. With 100% digestate slightly delayed.

Similar development of parameters (Temp, O₂- und CO₂) in all treatments.

Strong reduction in NH₄ during the first 4 weeks in all treatments. With 100% digestate, less pronounced during the first 2 weeks.

Low content of NO₃-Gehalte in all treatments during the whole experiment.

After 8 weeks of composting: Nmin blockage in the soil in the treatments with 100 and 70% digestate. NH₄ losses? Admixture of fresh compost reduced the problem.

After 8 weeks of composting: intermediate phytotoxicity in all treatments.
Preliminary experiments on solutions

Experiment 3:

- A: Mixtures digestate/green material (100/0; 50/50, 25/75, 0/100)
- B: Mixtures digestate/young compost (100/0; 75/25, 50/50, 25/75, 0/100)
- C: Mixtures digestate/mature compost (100/0; 75/25, 50/50, 25/75, 0/100)

Standard mixture of the composting plant

- Green material: 20% branches, 30% green manure, 25% lawn cuttings, 10% sieve remains, 15% soil rich in clay
- Young compost: 6 weeks old, from: 15% branches, 25% green manure, 25% lawn cutting, 15% sieve remains, 5% paper lime, 15% soil rich in clay
- Mature compost: 10 months old, from: 20% branches, 30% green manure, 20% lawn cutting, 10% sieve remains, 5% paper lime, 15% soil rich in clay

Composting system: small piles turned 2x weekly

Trial period: 10 weeks (04.10.2005 – 29.11.2005)
Preliminary experiments on solutions

Experiment 3

NH₄-N-content in compost

Duration of process [weeks]

0 2 4 6 8 10

Heiden, 24th February 2010

Experiment 3

NO₃-N-content in compost

Duration of process [weeks]

0 2 4 6 8 10

Heiden, 24th February 2010

Experiment 3

Humuszahl

Duration of process [weeks]

0 2 4 6 8 10

Heiden, 24th February 2010
Preliminary experiments on solutions

Experiment 3

Pflanzenverträglichkeit nach 6 Wochen

0 20 40 60 80 100

Shoots weight [% of control]

BRS-200 100dig 50dig 50gam 25dig 75gam 100gam 75dig 25gam 50yc 25dig 75yc 100yc 75mc 50mc 25mc 100mc

Cress open

Heiden, 24th February 2010

Preliminary experiments on solutions

Versuch 3

Pflanzenverträglichkeit nach 6 Wochen

0 20 40 60 80 100

Roots length [% control]

BRS-200 100dig 50dig 50gam 25dig 75gam 100gam 75dig 25gam 50yc 25dig 75yc 100yc 75mc 50mc 25mc 100mc

Cress closed

Heiden, 24th February 2010

Preliminary experiments on solutions

Experiment 3 (small piles):

- Very active process by all treatments with more than 25% digestate.
- Strong reduction in NH₄ during the first week by digestate.
- NO₃-contents elevated by almost all treatments after ca. 4 weeks. However, these contents stay modest. Nitrate content in the mixture with mature compost sink during the process. It will be probably integrate in the microbiological biomass.
- It is in this experiment not possible to determined how much NH₄-N is lost and how much is bind in the biomass.
- After 8 weeks composting process: moderate phytotoxicity by all treatments.
- Addition of compost (young or mature) improved the stability of the organic matter.
- In opposite to green material, addition of mature compost reduced the phytotoxicity of the compost already after 6 weeks composting process.

Heiden, 24th February 2010
Preliminary experiments on solutions

Experiment 4:

- Treatments:
 - A: 90% young compost, 10% sieve remains
 - B: 25% digestate, 65% young compost, 10% sieve remains
 - C: 50% digestate, 40% young compost, 10% sieve remains
 - D: 75% digestate, 15% young compost, 10% sieve remains

- Kompostiersystem: high piles, turn with wheel loader
- Turn intensity: first month: each 10 days
 from second month: each 15 days
- Trial period: 12 weeks (22.06.2009 – 14.09.2009)
Preliminary experiments on solutions

Experiment 4

NH₄-N-content in compost

- 75% digestate
- 50% digestate
- 25% digestate
- 0% digestate

NO₃-N-content in compost

- 75% digestate
- 50% digestate
- 25% digestate
- 0% digestate

NO₂-N-content in compost

- 75% digestate
- 50% digestate
- 25% digestate
- 0% digestate

Heiden, 24th February 2010
Experiment 4

Total nitrogen in relation to OM

<table>
<thead>
<tr>
<th></th>
<th>Week 0</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% digestate</td>
<td>+7.6%</td>
<td></td>
</tr>
<tr>
<td>25% digestate</td>
<td>+31.4%</td>
<td></td>
</tr>
<tr>
<td>50% digestate</td>
<td>+28.1%</td>
<td></td>
</tr>
<tr>
<td>75% digestate</td>
<td>+27.2%</td>
<td></td>
</tr>
</tbody>
</table>

Heiden, 24th February 2010

Total nitrogen in relation to ash content

<table>
<thead>
<tr>
<th></th>
<th>Week 0</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% digestate</td>
<td>+7.0%</td>
<td></td>
</tr>
<tr>
<td>25% digestate</td>
<td>+16.5%</td>
<td></td>
</tr>
<tr>
<td>50% digestate</td>
<td>+25.4%</td>
<td></td>
</tr>
<tr>
<td>75% digestate</td>
<td>+22.8%</td>
<td></td>
</tr>
</tbody>
</table>

Heiden, 24th February 2010

Humus number

<table>
<thead>
<tr>
<th>Duration of process (days)</th>
<th>0% digestate</th>
<th>25% digestate</th>
<th>50% digestate</th>
<th>75% digestate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>25</td>
<td>42</td>
<td>84</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>50</td>
<td>70</td>
<td>112</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>75</td>
<td>98</td>
<td>168</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
<td>100</td>
<td>124</td>
<td>200</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td></td>
<td>148</td>
<td>230</td>
</tr>
<tr>
<td>84</td>
<td>84</td>
<td></td>
<td>174</td>
<td>256</td>
</tr>
</tbody>
</table>

Heiden, 24th February 2010
Preliminary experiments on solutions

Experiment 4

Organic matter

<table>
<thead>
<tr>
<th>Digestate Level</th>
<th>Week 0</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>-9.3%</td>
<td>-27.3%</td>
</tr>
<tr>
<td>25%</td>
<td>-25.5%</td>
<td>-23.4%</td>
</tr>
<tr>
<td>50%</td>
<td>-23.1%</td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td>-23.4%</td>
<td></td>
</tr>
</tbody>
</table>

Heiden, 24th February 2010

Phytotoxicity

Cress open

<table>
<thead>
<tr>
<th>Solution</th>
<th>Shoots weight [% control]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRS-200</td>
<td>40%</td>
</tr>
<tr>
<td>0% digestate</td>
<td>30%</td>
</tr>
<tr>
<td>25% digestate</td>
<td>20%</td>
</tr>
<tr>
<td>50% digestate</td>
<td>10%</td>
</tr>
<tr>
<td>75% digestate</td>
<td>0%</td>
</tr>
</tbody>
</table>

Heiden, 24th February 2010

Cress closed

<table>
<thead>
<tr>
<th>Solution</th>
<th>Roots length [% control]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRS-200</td>
<td>60%</td>
</tr>
<tr>
<td>0% digestate</td>
<td>50%</td>
</tr>
<tr>
<td>25% digestate</td>
<td>40%</td>
</tr>
<tr>
<td>50% digestate</td>
<td>30%</td>
</tr>
<tr>
<td>75% digestate</td>
<td>20%</td>
</tr>
</tbody>
</table>

Heiden, 24th February 2010
Preliminary experiments on solutions

- **Experiment 4 (high piles):**
 - High temperatures were observed during the all experiment by all treatments with digestate (70°C after 12 weeks process)
 - Relatively regular reduction of NH$_4$ during the all process
 - Almost no development of NO$_3$ during the first 12 weeks of process. Possible reasons: not enough oxygen and/or too high temperatures.
 - Ca. 20% lost of nitrogen in all treatments with digestate. The addition of young compost has these loses hardly reduced.
 - Humus number: In high piles we could observed almost no stabilization of the organic matter.
 - A decomposition of the organic matter from digestate could be observed, but no development of crumbly structure. The product stay very fibrous.
 - By all the treatments was an important phytotoxicity to observed also after 12 weeks of process. Probably is the insufficiently supply of oxygen in the pile the reason for the poor biological quality of the compost produced.

Conclusions of preliminary experiments

- **Process development**
 - Digestate contains enough energy for post-treatment
 - Improved aeration in small heaps favors rotting of organic substance
 - Addition of rotted green material can optimize the rotting process.

- **NH$_4$ losses**
 - Danger of NH$_4$ losses is higher in small heaps with intensive rotting.
 - Addition of rotted green material or compost can reduce NH$_4$ losses and N blocking.

- **Biological quality of compost**
 - Post-treatment can greatly reduce phytotoxicity
 - Addition of rotted green material can reduce phytotoxicity, if the quality is good. Otherwise, it can have negative consequences.
 - In large heaps with low movement, the biological quality remains unsatisfactory, because there is not enough oxygen for an optimal rotting process.

First experiences in practice

- **Post-composting of solid digestate from dry digestion (>20% in the digester) at thermophilic temperature**
First experiences in practice

1: First step of post composting:
 - in a hall, with forced aeration (3 - 4 weeks)
 - Addition of paper lime, soil and sieve remains
 - Pile turning with a turn machine Grizzli

Heiden, 24th February 2010

First experiences in practice

2: Eventually interim storage
 - Storage boxes with aeration

Heiden, 24th February 2010

First experiences in practice

3: Second step of post composting (maturation)
 - High piles with turn machine Grizzli
 - Digestate alone or with green manure

Heiden, 24th February 2010
First experiences in practice

4: Sieving and production of different products

First experiences in practice

Water content and NH\(_4\) losses

First experiences in practice

Influence of water content on NO\(_3\) content
First experiences in practice

Evolution of Nmin content

- D1: Digestate after 4 weeks in composting hall
- D2: Digestate after interim storage
- C: Compost after pile composting:
 - 100: with 100% digestate from hall,
 - 30: with 30% digestate from hall
 - 0: without digestate

Evolution of maturity process

- D1: Digestate after 4 weeks in composting hall
- D2: Digestate after interim storage
- C: Compost after pile composting:
 - 100: with 100% digestate from hall,
 - 30: with 30% digestate from hall
 - 0: without digestate

Influence of water content on decomposition process

- Up to 55% DM: almost no degradation of organic matter

- First step (hall)
- Interim storage (box)
- Second step (pile)
First experiences in practice

- Influence of compost addition on the rotting process

Digestate after step 1

Digestate after step 2

Digestate + compost after step 2

Compost after step 2

Heiden, 24th February 2010

First experiences in practice

- Influence of compost addition on the rotting process

Optimized rotting allows the production of high value composts

- To reduce NH₄ losses, the material should be kept moist

- If the dry matter content is too high, there is no breakdown

- If there is enough humidity, good nitrification is observed.

- Addition of green material improves breakdown and soil structure

Heiden, 24th February 2010
Aspects for additional research and development

- Minimization of NH₄-N losses
 - Optimization of humidity management
 - Optimization of the quantity and quality of added green material
 - Optimization of airation management
 - Addition of rotted green material / young compost
- Optimization of the build-up phase (particle structure)
- Compromise between biological needs, technical feasibility and economical aspects.
- Post-fermentation rotting must be tailored to the quality requirements and the intended use of the end product.

Conclusions

- Improvement of solid digestate with post-fermentation rotting is possible, but requires time and efforts.
- Post-fermentation rotting can stabilize the production and lead to high value, stable products.
- Post-fermentation rotting can broaden the spectrum of applications of solid digestate.
- To be successful, post-fermentation rotting must be carefully planned and carried out.

Acknowledgements

The authors thank:

- the Swiss Federal Office for the Environment FOEN,
- the Swiss Federal Office of Energy SFOE,
- the Federal Office for Agriculture FOAG,
- Axpo Kompogas AG
- Leureko AG

for financial and/or technical support.